Copied to
clipboard

G = C23.D22order 352 = 25·11

3rd non-split extension by C23 of D22 acting via D22/C11=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.3D22, C44⋊C43C2, (C2×C4).27D22, Dic11⋊C48C2, C22.7(C4○D4), (C2×C44).2C22, C22⋊C4.2D11, C112(C422C2), (C4×Dic11)⋊10C2, (C2×C22).20C23, C23.D11.3C2, C2.7(D42D11), C2.9(D445C2), (C22×C22).9C22, C22.40(C22×D11), (C2×Dic11).26C22, (C11×C22⋊C4).2C2, SmallGroup(352,74)

Series: Derived Chief Lower central Upper central

C1C2×C22 — C23.D22
C1C11C22C2×C22C2×Dic11C4×Dic11 — C23.D22
C11C2×C22 — C23.D22
C1C22C22⋊C4

Generators and relations for C23.D22
 G = < a,b,c,d,e | a2=b2=c2=1, d22=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d21 >

Subgroups: 274 in 60 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C11, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22, C22, C422C2, Dic11, C44, C2×C22, C2×C22, C2×Dic11, C2×C44, C22×C22, C4×Dic11, Dic11⋊C4, C44⋊C4, C23.D11, C11×C22⋊C4, C23.D22
Quotients: C1, C2, C22, C23, C4○D4, D11, C422C2, D22, C22×D11, D445C2, D42D11, C23.D22

Smallest permutation representation of C23.D22
On 176 points
Generators in S176
(2 124)(4 126)(6 128)(8 130)(10 132)(12 90)(14 92)(16 94)(18 96)(20 98)(22 100)(24 102)(26 104)(28 106)(30 108)(32 110)(34 112)(36 114)(38 116)(40 118)(42 120)(44 122)(45 67)(46 138)(47 69)(48 140)(49 71)(50 142)(51 73)(52 144)(53 75)(54 146)(55 77)(56 148)(57 79)(58 150)(59 81)(60 152)(61 83)(62 154)(63 85)(64 156)(65 87)(66 158)(68 160)(70 162)(72 164)(74 166)(76 168)(78 170)(80 172)(82 174)(84 176)(86 134)(88 136)(133 155)(135 157)(137 159)(139 161)(141 163)(143 165)(145 167)(147 169)(149 171)(151 173)(153 175)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)(89 111)(90 112)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)(97 119)(98 120)(99 121)(100 122)(101 123)(102 124)(103 125)(104 126)(105 127)(106 128)(107 129)(108 130)(109 131)(110 132)(133 155)(134 156)(135 157)(136 158)(137 159)(138 160)(139 161)(140 162)(141 163)(142 164)(143 165)(144 166)(145 167)(146 168)(147 169)(148 170)(149 171)(150 172)(151 173)(152 174)(153 175)(154 176)
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 129)(8 130)(9 131)(10 132)(11 89)(12 90)(13 91)(14 92)(15 93)(16 94)(17 95)(18 96)(19 97)(20 98)(21 99)(22 100)(23 101)(24 102)(25 103)(26 104)(27 105)(28 106)(29 107)(30 108)(31 109)(32 110)(33 111)(34 112)(35 113)(36 114)(37 115)(38 116)(39 117)(40 118)(41 119)(42 120)(43 121)(44 122)(45 159)(46 160)(47 161)(48 162)(49 163)(50 164)(51 165)(52 166)(53 167)(54 168)(55 169)(56 170)(57 171)(58 172)(59 173)(60 174)(61 175)(62 176)(63 133)(64 134)(65 135)(66 136)(67 137)(68 138)(69 139)(70 140)(71 141)(72 142)(73 143)(74 144)(75 145)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 155)(86 156)(87 157)(88 158)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 51 101 143)(2 72 102 164)(3 49 103 141)(4 70 104 162)(5 47 105 139)(6 68 106 160)(7 45 107 137)(8 66 108 158)(9 87 109 135)(10 64 110 156)(11 85 111 133)(12 62 112 154)(13 83 113 175)(14 60 114 152)(15 81 115 173)(16 58 116 150)(17 79 117 171)(18 56 118 148)(19 77 119 169)(20 54 120 146)(21 75 121 167)(22 52 122 144)(23 73 123 165)(24 50 124 142)(25 71 125 163)(26 48 126 140)(27 69 127 161)(28 46 128 138)(29 67 129 159)(30 88 130 136)(31 65 131 157)(32 86 132 134)(33 63 89 155)(34 84 90 176)(35 61 91 153)(36 82 92 174)(37 59 93 151)(38 80 94 172)(39 57 95 149)(40 78 96 170)(41 55 97 147)(42 76 98 168)(43 53 99 145)(44 74 100 166)

G:=sub<Sym(176)| (2,124)(4,126)(6,128)(8,130)(10,132)(12,90)(14,92)(16,94)(18,96)(20,98)(22,100)(24,102)(26,104)(28,106)(30,108)(32,110)(34,112)(36,114)(38,116)(40,118)(42,120)(44,122)(45,67)(46,138)(47,69)(48,140)(49,71)(50,142)(51,73)(52,144)(53,75)(54,146)(55,77)(56,148)(57,79)(58,150)(59,81)(60,152)(61,83)(62,154)(63,85)(64,156)(65,87)(66,158)(68,160)(70,162)(72,164)(74,166)(76,168)(78,170)(80,172)(82,174)(84,176)(86,134)(88,136)(133,155)(135,157)(137,159)(139,161)(141,163)(143,165)(145,167)(147,169)(149,171)(151,173)(153,175), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,89)(12,90)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,103)(26,104)(27,105)(28,106)(29,107)(30,108)(31,109)(32,110)(33,111)(34,112)(35,113)(36,114)(37,115)(38,116)(39,117)(40,118)(41,119)(42,120)(43,121)(44,122)(45,159)(46,160)(47,161)(48,162)(49,163)(50,164)(51,165)(52,166)(53,167)(54,168)(55,169)(56,170)(57,171)(58,172)(59,173)(60,174)(61,175)(62,176)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,155)(86,156)(87,157)(88,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,51,101,143)(2,72,102,164)(3,49,103,141)(4,70,104,162)(5,47,105,139)(6,68,106,160)(7,45,107,137)(8,66,108,158)(9,87,109,135)(10,64,110,156)(11,85,111,133)(12,62,112,154)(13,83,113,175)(14,60,114,152)(15,81,115,173)(16,58,116,150)(17,79,117,171)(18,56,118,148)(19,77,119,169)(20,54,120,146)(21,75,121,167)(22,52,122,144)(23,73,123,165)(24,50,124,142)(25,71,125,163)(26,48,126,140)(27,69,127,161)(28,46,128,138)(29,67,129,159)(30,88,130,136)(31,65,131,157)(32,86,132,134)(33,63,89,155)(34,84,90,176)(35,61,91,153)(36,82,92,174)(37,59,93,151)(38,80,94,172)(39,57,95,149)(40,78,96,170)(41,55,97,147)(42,76,98,168)(43,53,99,145)(44,74,100,166)>;

G:=Group( (2,124)(4,126)(6,128)(8,130)(10,132)(12,90)(14,92)(16,94)(18,96)(20,98)(22,100)(24,102)(26,104)(28,106)(30,108)(32,110)(34,112)(36,114)(38,116)(40,118)(42,120)(44,122)(45,67)(46,138)(47,69)(48,140)(49,71)(50,142)(51,73)(52,144)(53,75)(54,146)(55,77)(56,148)(57,79)(58,150)(59,81)(60,152)(61,83)(62,154)(63,85)(64,156)(65,87)(66,158)(68,160)(70,162)(72,164)(74,166)(76,168)(78,170)(80,172)(82,174)(84,176)(86,134)(88,136)(133,155)(135,157)(137,159)(139,161)(141,163)(143,165)(145,167)(147,169)(149,171)(151,173)(153,175), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,89)(12,90)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,103)(26,104)(27,105)(28,106)(29,107)(30,108)(31,109)(32,110)(33,111)(34,112)(35,113)(36,114)(37,115)(38,116)(39,117)(40,118)(41,119)(42,120)(43,121)(44,122)(45,159)(46,160)(47,161)(48,162)(49,163)(50,164)(51,165)(52,166)(53,167)(54,168)(55,169)(56,170)(57,171)(58,172)(59,173)(60,174)(61,175)(62,176)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,155)(86,156)(87,157)(88,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,51,101,143)(2,72,102,164)(3,49,103,141)(4,70,104,162)(5,47,105,139)(6,68,106,160)(7,45,107,137)(8,66,108,158)(9,87,109,135)(10,64,110,156)(11,85,111,133)(12,62,112,154)(13,83,113,175)(14,60,114,152)(15,81,115,173)(16,58,116,150)(17,79,117,171)(18,56,118,148)(19,77,119,169)(20,54,120,146)(21,75,121,167)(22,52,122,144)(23,73,123,165)(24,50,124,142)(25,71,125,163)(26,48,126,140)(27,69,127,161)(28,46,128,138)(29,67,129,159)(30,88,130,136)(31,65,131,157)(32,86,132,134)(33,63,89,155)(34,84,90,176)(35,61,91,153)(36,82,92,174)(37,59,93,151)(38,80,94,172)(39,57,95,149)(40,78,96,170)(41,55,97,147)(42,76,98,168)(43,53,99,145)(44,74,100,166) );

G=PermutationGroup([[(2,124),(4,126),(6,128),(8,130),(10,132),(12,90),(14,92),(16,94),(18,96),(20,98),(22,100),(24,102),(26,104),(28,106),(30,108),(32,110),(34,112),(36,114),(38,116),(40,118),(42,120),(44,122),(45,67),(46,138),(47,69),(48,140),(49,71),(50,142),(51,73),(52,144),(53,75),(54,146),(55,77),(56,148),(57,79),(58,150),(59,81),(60,152),(61,83),(62,154),(63,85),(64,156),(65,87),(66,158),(68,160),(70,162),(72,164),(74,166),(76,168),(78,170),(80,172),(82,174),(84,176),(86,134),(88,136),(133,155),(135,157),(137,159),(139,161),(141,163),(143,165),(145,167),(147,169),(149,171),(151,173),(153,175)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88),(89,111),(90,112),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118),(97,119),(98,120),(99,121),(100,122),(101,123),(102,124),(103,125),(104,126),(105,127),(106,128),(107,129),(108,130),(109,131),(110,132),(133,155),(134,156),(135,157),(136,158),(137,159),(138,160),(139,161),(140,162),(141,163),(142,164),(143,165),(144,166),(145,167),(146,168),(147,169),(148,170),(149,171),(150,172),(151,173),(152,174),(153,175),(154,176)], [(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,129),(8,130),(9,131),(10,132),(11,89),(12,90),(13,91),(14,92),(15,93),(16,94),(17,95),(18,96),(19,97),(20,98),(21,99),(22,100),(23,101),(24,102),(25,103),(26,104),(27,105),(28,106),(29,107),(30,108),(31,109),(32,110),(33,111),(34,112),(35,113),(36,114),(37,115),(38,116),(39,117),(40,118),(41,119),(42,120),(43,121),(44,122),(45,159),(46,160),(47,161),(48,162),(49,163),(50,164),(51,165),(52,166),(53,167),(54,168),(55,169),(56,170),(57,171),(58,172),(59,173),(60,174),(61,175),(62,176),(63,133),(64,134),(65,135),(66,136),(67,137),(68,138),(69,139),(70,140),(71,141),(72,142),(73,143),(74,144),(75,145),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,155),(86,156),(87,157),(88,158)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,51,101,143),(2,72,102,164),(3,49,103,141),(4,70,104,162),(5,47,105,139),(6,68,106,160),(7,45,107,137),(8,66,108,158),(9,87,109,135),(10,64,110,156),(11,85,111,133),(12,62,112,154),(13,83,113,175),(14,60,114,152),(15,81,115,173),(16,58,116,150),(17,79,117,171),(18,56,118,148),(19,77,119,169),(20,54,120,146),(21,75,121,167),(22,52,122,144),(23,73,123,165),(24,50,124,142),(25,71,125,163),(26,48,126,140),(27,69,127,161),(28,46,128,138),(29,67,129,159),(30,88,130,136),(31,65,131,157),(32,86,132,134),(33,63,89,155),(34,84,90,176),(35,61,91,153),(36,82,92,174),(37,59,93,151),(38,80,94,172),(39,57,95,149),(40,78,96,170),(41,55,97,147),(42,76,98,168),(43,53,99,145),(44,74,100,166)]])

64 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I11A···11E22A···22O22P···22Y44A···44T
order1222244444444411···1122···2222···2244···44
size111142242222222244442···22···24···44···4

64 irreducible representations

dim111111222224
type+++++++++-
imageC1C2C2C2C2C2C4○D4D11D22D22D445C2D42D11
kernelC23.D22C4×Dic11Dic11⋊C4C44⋊C4C23.D11C11×C22⋊C4C22C22⋊C4C2×C4C23C2C2
# reps112121651052010

Matrix representation of C23.D22 in GL6(𝔽89)

100000
010000
001000
00678800
000010
00004688
,
100000
010000
0088000
0008800
000010
000001
,
100000
010000
001000
000100
0000880
0000088
,
8700000
39440000
0034000
0003400
0000523
00005784
,
28490000
4610000
0088800
0022100
0000340
0000034

G:=sub<GL(6,GF(89))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,67,0,0,0,0,0,88,0,0,0,0,0,0,1,46,0,0,0,0,0,88],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,88,0,0,0,0,0,0,88,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,88,0,0,0,0,0,0,88],[87,39,0,0,0,0,0,44,0,0,0,0,0,0,34,0,0,0,0,0,0,34,0,0,0,0,0,0,5,57,0,0,0,0,23,84],[28,4,0,0,0,0,49,61,0,0,0,0,0,0,88,22,0,0,0,0,8,1,0,0,0,0,0,0,34,0,0,0,0,0,0,34] >;

C23.D22 in GAP, Magma, Sage, TeX

C_2^3.D_{22}
% in TeX

G:=Group("C2^3.D22");
// GroupNames label

G:=SmallGroup(352,74);
// by ID

G=gap.SmallGroup(352,74);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,96,55,506,188,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^22=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^21>;
// generators/relations

׿
×
𝔽